

LA-UR-18-21270

Approved for public release; distribution is unlimited.

Title:

A Multiscale, Conservative, Implicit 1D-2V Multispecies Vlasov-Fokker-Planck Solver for ICF Capsule Implosion Simulations

Author(s): Chacon, Luis

Taitano, William Keenan, Brett Simakov, Andrei N.

Intended for: Email to colleague

Issued: 2018-02-16

A Multiscale, Conservative, Implicit 1D-2V Multispecies Vlasov-Fokker-Planck Solver for ICF Capsule Implosion Simulations

CCAM Seminar, Purdue U. Feb. 12th, 2018

Luis Chacón

W. Taitano

B. Keenan

A. Simakov

Work sponsored by: ASC (TBI, Metropolis), LDRD

Agenda

Feb. 12, 2018

CCAM Seminar, Purdue U.

- Motivation and challenges of Rosenbluth-VFP
 - Moderate Knudsen numbers are common in ICF implosions
 - Temporal and spatial resolution requirements
- What we bring to the table
 - Multi-species Vlasov-Rosenbluth-Fokker-Planck + fluid electrons + radiation (eventually)
 - Asymptotic well posedness
 - Fully implicit, nonlinear formulation
 - Fully conservative discrete implementation (mass, momentum, and energy)
 - Orders of magnitude algorithmic speedups
 - Fully implicit timestepping [O(N)]
 - Velocity space dynamic adaptivity
 - Asymptotic treatment of collision operator for disparate v_{th} ratios
- Numerical verification and application of the algorithm to ICF

How does ICF work?

How does ICF work?

Motivation: kinetic effects in ICF are important

From Rosenberg et al., PoP, 21 (2014)

Motivation (cont.)

- To enable kinetic simulations of full ICF spherical implosions, from early time to hot spot formation and disassembly.
 - –Kinetic effects might be important in key stages of ICF implosions (e.g., shock phase, hot-spot formation); $N_k \ge 10^{-1}$
 - -Several kinetic effects have been recently suggested as potentially impacting reactivity: Knudsen layer, fuel stratification, shock broadening, kinetic interface mix,...
- Ultimate role must be discriminated with fully kinetic (Vlasov-Fokker-Planck) simulations.
- A credible system-scale VFP simulation capability requires enabling algorithmic developments.
 - Our implementation follows the multiscale philosophy of early practitioners, but with a very different implementation strategy (fully implicit, strict conservation for asymptotic well-posedness).

High-fidelity simulations require a kinetic treatment

 Vlasov-Fokker-Planck (Rosenbluth form; equivalent to Landau form) is the model of choice for weakly coupled plasmas

$$\frac{Df_{i}}{Dt} \equiv \frac{\partial f_{i}}{\partial t} + \vec{v} \cdot \nabla f_{i} + \vec{a}_{i} \cdot \nabla_{v} f_{i} = \sum_{j} C_{ij} (f_{i}, f_{j})$$

$$\frac{C_{ij} (f_{i}, f_{j})}{C_{ij} (f_{i}, f_{j})} = \Gamma_{ij} \nabla_{v} \cdot \left[D_{j} \right] \nabla_{v} f_{i} - \frac{m_{i}}{m_{j}} A_{j} f_{i}]$$

$$D_{j} = \nabla_{v} \nabla_{v} G_{j} \qquad A_{j} = \nabla_{v} H_{j}$$

$$\nabla_{v}^{2} H_{j} (\vec{v}) = -8\pi f_{j} (\vec{v})$$

$$\nabla_{v}^{2} G_{j} (\vec{v}) = H_{j} (\vec{v})$$

+ electrons + Maxwell's equations...

VFP+Maxwell is an extremely challenging equation set

- High dimensionality (3D+3V)
- Nonlinear
- Exceedingly multiscale

The iFP Vlasov-Fokker-Planck code

A multiscale VFP solver for ICF applications

- Consider 1D-2V geometries (planar, spherical symmetry)
- Consider suitable asymptotic limits for Maxwell equations:
 - Electrostatic approximation (exact in 1D, $\beta \sim 10^3$ -10⁴ in Omega)
 - Quasineutrality: $\rho = 0$
 - -Ambipolarity: j = 0 (in 1D)
 - Eliminates plasma frequency, Debye length, and charge separation effects (this is OK for our timescales)

Consider fluid electrons:

- Rigorous model, including thermal and friction forces (Simakov et al, PoP 2014)
- Massless electrons (regular limit)
- Eliminates non-local heat transport effects (drawback)
- Interim approximation (ambipolarity can be imposed with kinetic e)
- lons remain fully kinetic, allow for multiple species

Model equations: fully kinetic ions + fluid electrons

Vlasov-Fokker-Planck for ion species

Fluid electrons

$$\frac{3}{2}\partial_t (n_e T_e) + \frac{5}{2}\partial_x (u_e n_e T_e) - u_e \partial_x (n_e T_e) - \partial_x \kappa_e \partial_x T_e = \sum_{\alpha} C_{e\alpha}$$

$$n_e = -q_e^{-1} \sum_{N_s} q_{\alpha} n_{\alpha} \qquad u_e = -q_e^{-1} n_e^{-1} \sum_{\alpha \neq e}^{N_s} q_{\alpha} n_{\alpha} u_{\alpha}$$

Electric field model: e pressure, friction, thermal forces

$$E = -\frac{\nabla p_e + \sum_i \mathbf{F}_{ie}}{en_e} = -\frac{\nabla p_e}{en_e} - \frac{\alpha_0(Z_{eff})m_e}{e} \sum_i \nu_{ei}(\mathbf{V}_e - \mathbf{V}_i) - \frac{\beta_0(Z_{eff})}{e} \nabla T_e$$

Simakov and Molvig, PoP 21 (2014)

ICF kinetic simulation tools are sparse

- French CEA's FPion and FUSE code [O. Larroche, EPJ, 27 (2003)]:
 - Semi-implicit ($\Delta t < \tau_{col}$ e.g. can't study pusher mix)
 - Adaptive grid, but non-conservative
 - Periodic remapping
 - Cannot investigate large mass disparities
- Recent implosion calculations using the LSP code [T.J.T. Kwan et al., poster, IFSA2015 (2015); A. Le et al, Phys. Plasmas, 2]
 - Hybrid PIC code + Monte Carlo collision operator
 - Inherits Monte Carlo limitations in convergence and order of accuracy ($\sim \mathcal{O}\left(\sqrt{\Delta t}\right)$, $\mathcal{O}(1/\sqrt{N_p})$)
 - Issues with energy conservation [A. Le et al. KEW, LLNL (2015)]

Algorithmic innovations of iFP

- Fully nonlinearly time-implicit ($\Delta t >> \tau_{col}$)
 - Iterate solution to convergence
 - Based on an optimal multigrid preconditioned NK and AA
- Optimal, adaptive grid in phase space
 - Physics based adaptivity in velocity space based on characteristic normalization
 - Optimal moving mesh in physical space
- Fully conservative (mass, momentum, and energy) and asymptotic preserving
 - Enslavement of error in conservation symmetry into discretization

ICF adaptive meshing VFP needs

- Disparate temperatures during implosion dictate velocity resolution.
 - $-v_{th,max}$ determines L_v
 - $-\,v_{th,min}\,determines\,\Delta v$

 Shock width and capsule size dictate physical space resolution

Brute-force VFP algorithms (uniform mesh, explicit timestepping) are impractical for ICF

Mesh requirements:

- -Intra species v_{th,max} /v_{th,min} ~100
- -Inter species $(v_{th,\alpha}/v_{th,\beta})_{max}$ ~30

$$-N_v \sim [10(v_{th.max}/v_{th.min})x(v_{th.\alpha}/v_{th.\beta})]^2 \sim 10^9$$

- $-N_r \sim 10^3 10^4$
- $-N=N_rN_v\sim 10^{12}-10^{13}$ unknowns in 1D2V!

Timestep requirements:

$$-t_{sim}$$
=10 ns

$$-N_t=10^{10}$$
 time steps

$$\Delta t_{exp}^{coll} \sim \frac{1}{10} \left(\frac{\Delta v}{v_{th}^{min}} \right)^2 \nu_{coll}^{-1} \sim 10^{-9} \, ns$$

Beyond exascale (10¹⁸ FLOPS)!

Adaptive mesh with implicit timestepping makes problem tractable

- Mesh requirements: $\widehat{v} = v/v_{th}$
 - -v-space adaptivity with v_{th} normalization, $N_v \sim 10^4$ - 10^5
 - Moving mesh in physical space, N_r~10²
 - Second-order accurate phase-space discretization
 - $-N=N_vN_r\sim 10^6\sim 10^7$ (vs. 10^{12} with static mesh)

Timestep requirements:

- Optimal O(N_v) implicit nonlinear algorithms [Chacon, *JCP*, 157 (2000), Taitano et al., *JCP*, 297 (2015)]
- -Second-order accurate timestepping
- $-\Delta t_{imp} = \Delta t_{str} \sim 10^{-3} \text{ ns}$
- $-N_t \sim 10^3 10^4$ (vs. 10^{10} with explicit methods)
- Terascale-ready! (10¹² FLOPS, any reasonable cluster)

v_{th} adaptivity provides an enabling capability to simulate ICF plasmas

- D-e-α, 3 species thermalization problem
- Resolution with static grid:

$$N_v \sim 2 \left(\frac{v_{th,e,\infty}}{v_{th,D,0}}\right)^2 = 140000 \times 70000$$

Resolution with adaptivity and asymptotics:

$$N_v = 128 \times 64$$

Mesh savings of

Conservation of invariants is critical!

With energy conservation

Without energy conservation

Formulation of iFP

1D-2V Rosenbluth-VFP model: Adaptive velocity space mesh

- v_{th} adaptivity allows optimal mesh resolution throughout the domain
- Analytical transformation introduces inertial terms

Representation and analytical coordinate transformation for adaptive meshing

1D spherical (with logical mesh); 2D cylindrical geometry in velocity space

Coordinate transformation:

$$\widehat{v}_{||} \equiv \frac{\vec{v} \cdot \vec{\hat{r}}}{v_{th,\alpha}}, \ \widehat{v}_{\perp} \equiv \frac{\sqrt{v^2 - v_{||}^2}}{v_{th,\alpha}}$$

$$\sqrt{g_v} (t, r, \widehat{v}_{\perp}) \equiv v_{th,\alpha}^3 (t, r) r^2 \widehat{v}_{\perp}$$
$$J_{r\xi} = \partial_{\xi} r$$

Coordinate transformation introduces inertial terms

VRFP equation in transformed coordinates

$$\partial_{t}\left(\sqrt{g_{v}}J_{r\xi}f_{\alpha}\right) + \partial_{\xi}\left(\sqrt{g_{v}}v_{th,\alpha}\left[\widehat{v}_{||} - \widehat{\boldsymbol{r}_{\alpha}}\right]f_{\alpha}\right) + \\ \partial_{\widehat{v}_{||}}\left(J_{r\xi}\sqrt{g_{v}}\widehat{\boldsymbol{v}_{||}}f_{\alpha}\right) + \partial_{\widehat{v}_{\perp}}\left(J_{r\xi}\sqrt{g_{v}}\widehat{\boldsymbol{v}_{\perp}}f_{\alpha}\right) = J_{r\xi}\sqrt{g_{v}}\sum_{\beta}^{N_{s}}C_{\alpha\beta}\left(f_{\alpha}, f_{\beta}\right)$$

$$\widehat{\left[\hat{\boldsymbol{v}}_{||}\right]} = \underbrace{\left[\frac{\widehat{\boldsymbol{v}}_{||}}{2} \left(\boldsymbol{v}_{th,\alpha}^{-2} \partial_t \boldsymbol{v}_{th,\alpha}^2 + J_{r\xi}^{-1} \left(\widehat{\boldsymbol{v}}_{||} - \widehat{\boldsymbol{x}}\right) \boldsymbol{v}_{th,\alpha}^{-1} \partial_\xi \boldsymbol{v}_{th,\alpha}^2\right)}_{\boldsymbol{T}_{th,\alpha}} + \underbrace{\frac{\widehat{\boldsymbol{v}}_{\perp}^2 \boldsymbol{v}_{th,\alpha}}{r} + \frac{q_{\alpha} E_{||}}{J_{r\xi} m_{\alpha} \boldsymbol{v}_{th,\alpha}}}_{\boldsymbol{T}_{th,\alpha}}$$

$$\widehat{\widehat{\boldsymbol{v}}}_{\perp} = \underbrace{ \left\{ \widehat{\boldsymbol{v}}_{\perp} \left(\boldsymbol{v}_{th,\alpha}^{-2} \partial_t \boldsymbol{v}_{th,\alpha}^2 + J_{r\xi}^{-1} \left(\widehat{\boldsymbol{v}}_{||} - \widehat{\boldsymbol{x}} \right) \boldsymbol{v}_{th,\alpha}^{-1} \partial_{\xi} \boldsymbol{v}_{th,\alpha}^2 \right) \right\} }_{r} \underbrace{ \widehat{\boldsymbol{v}}_{||} \widehat{\boldsymbol{v}}_{\perp} \boldsymbol{v}_{th,\alpha}}_{r}$$

Taitano, JCP, 318, 2016 Taitano, JCP, 2017, submitted r Inertial terms due to v_{th} adaptivity and Lagrangian mesh

Implicit solver strategy: Preconditioned Anderson Acceleration

Define the nonlinear residual:

$$R = \partial_t f + VE(f) - \nabla_v \cdot [\underline{\underline{D}} \cdot \nabla_v f - \underline{\underline{A}} f] = 0$$

- Consider fixed-point map: $G(f_k) = f_k P_k^{-1}R_k = f_{k+1}$ If $P_k = J_k$, we recover Newton's method
- Anderson updates the solution by using history (nonlinear)
 of solutions to accelerate convergence via:

$$f_{k+1} = \sum_{i=0}^{n} \alpha_i^{(k)} G(f_{k-m_k+i})$$

- Can be readily preconditioned (P_k^{-1})
- Suitable for use with non-differentiable residuals (limiters, etc)

D. G. Anderson. Iterative procedures for nonlinear integral equations. *J. Assoc. Comput. Machinery*, 12:547–560, 1965.

Two stage operator splitting in PC operator

$$P^{-1}R = P_x^{-1}P_v^{-1}R$$

Step 1: Velocity space operators (including collisions)

$$P_v \circ = \partial_t \circ + V E_v(\circ) - \nabla_v \cdot [\underline{D} \cdot \nabla_v \circ -\underline{A} \circ]$$

Step 2: Streaming operator

$$P_x \circ = \partial_t \circ + \partial_x \circ$$

Preconditioner is an accelerator of convergence!

No splitting error will be present in the actual solution (driven by the nonlinear residual)

Nonlinear solver is algorithmically scalable, O(N_v)

Algorithm is highly scalable in parallel, O(N_p)

Implicit solver is very efficient

4 orders of magnitude more efficient than explicit methods

Algorithm achieves design accuracy (2nd order spatially and temporally)

Algorithm is highly accurate even when $\Delta t >> \tau_{col}$

- Correct self-similar solution [K. Molvig et al., PRL 113 (2014)] obtained for t>>τ_{col}
- Test of implicit solver with $\Delta t = 4x10^4 \tau_{col}$
- Successfully benchmarked against the DSMC VPIC code [Yin et al, Phys. Plasmas, 2016]

Rosenbluth-Fokker-Planck collision operator: Velocity Space Adapativity

1D-2V Rosenbluth-VFP model: analytical velocity space adaptivity (cont.)

Normalization of collision operator

$$\widehat{C}_{\alpha\beta} = \underbrace{v_{th,\alpha}^3}_{C_{\alpha\beta}} C_{\alpha\beta}$$

$$\widehat{C}_{\alpha\beta} = \frac{\Gamma_{\alpha\beta}}{v_{th,\beta}^3} \widehat{\nabla}_{v_{\alpha}} \cdot \left[\widehat{\nabla}_{v_{\alpha}} \widehat{\nabla}_{v_{\alpha}} \widehat{G}_{\alpha\beta} \cdot \widehat{\nabla}_{v_{\alpha}} \widehat{f}_{\alpha} - \frac{m_{\alpha}}{m_{\beta}} \widehat{f}_{\alpha} \widehat{\nabla}_{v_{\alpha}} \widehat{H}_{\alpha\beta} \right]$$

$$\widehat{\nabla}_{v_{\alpha}}^{2}\widehat{H}_{\alpha\beta} = -8\pi \underbrace{\widehat{f}_{\beta}\left(\widehat{v}_{\beta} = \widehat{v}_{\alpha}\frac{v_{th,\alpha}}{v_{th,\beta}}\right)}_{\widehat{V}_{th,\beta}^{2}} \qquad \widehat{\nabla}_{v_{\alpha}}^{2}\widehat{G}_{\alpha\beta} = \widehat{H}_{\alpha\beta}$$

$$\widehat{H}_{\alpha\beta} = H_{\beta}\frac{v_{th,\beta}^{3}}{v_{th,\alpha}^{2}} \qquad \widehat{G}_{\alpha\beta} = G_{\beta}\frac{v_{th,\beta}^{3}}{v_{th,\alpha}^{4}}$$

Procedure requires a transfer operation of \widehat{f}_{β} to \widehat{v}_{α} space, which can be problematic when $\widehat{v}_{\alpha}\gg\widehat{v}_{\beta}$ or $\widehat{v}_{\beta}\gg\widehat{v}_{\alpha}$: asymptotic treatment

Velocity space adaption does not help for interspecies collisions

- For electron-ion collisions, $v_{th,e}/v_{th,i} >> 1$
- Similarly, for α -ion collisions, $v_{th,\alpha}/v_{th,l} >> 1$

Very stringent mesh resolution requirements if determining potentials
 via:

$$\nabla_v^2 H_j(\vec{v}) = -8\pi f_j(\vec{v}) \qquad \nabla_v^2 G_j(\vec{v}) = H_j(\vec{v})$$

· Mesh requirement grows as:

$$N_v^d \propto \left(rac{v_{th,f}}{v_{th,s}}
ight)^d$$

 Velocity space adaption helps ONLY for self-species, but not for interspecies! We need an asymptotic treatment

1D-2V Rosenbluth-VFP model: Asymptotic Formulation of Interspecies Collisions for $v_{th,f} >> v_{th,s}$

$$H_s = \frac{n_s}{v} + \frac{n_s \boldsymbol{V}_s \cdot \boldsymbol{v}}{v^3} + \cdots$$

$$G_s = n_s v - \frac{n_s \boldsymbol{V}_s \cdot \boldsymbol{v}}{v} + \boldsymbol{\nabla}_v \boldsymbol{\nabla}_v v : \left(\frac{1}{2} \int \mathrm{d}^3 v' \, f_s' \boldsymbol{v}' \boldsymbol{v}' \right) + \cdots \right)$$

$$H_f = oldsymbol{v} \cdot \left(\int \mathrm{d}^3 v' \, f_f' rac{oldsymbol{v}'}{v'^3}
ight) + rac{1}{2} oldsymbol{v} oldsymbol{v} : \left[\int \mathrm{d}^3 v' \, f_f' oldsymbol{
abla}_{v'} oldsymbol{
abl$$

$$G_f = \frac{1}{2} \boldsymbol{v} \boldsymbol{v} : \left(\int d^3 v' f_f' \nabla_{v'} \nabla_{v'} v' \right) - \frac{1}{6} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v} : \left(\int d^3 v' f_f' \nabla_{v'} \nabla_{v'} \nabla_{v'} v' \right) + \frac{1}{24} \boldsymbol{v} \boldsymbol{v} \boldsymbol{v} : \left(\int d^3 v' f_f' \nabla_{v'} \nabla_{v'} \nabla_{v'} \nabla_{v'} v' \right) + \cdots$$

Rosenbluth-Fokker-Planck collision operator: conservation of mass, momentum, and energy

2V Rosenbluth-FP collision operator: conservation properties

 Conservation properties of FP collision operator result from symmetries:

$$C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_v \cdot \left[\vec{J}_{\alpha\beta,G} - \frac{m_\alpha}{m_\beta} \vec{J}_{\alpha\beta,H} \right]$$

Mass

$$\langle 1, C_{\alpha\beta} \rangle_{\vec{v}} = 0$$
 $\Rightarrow \left| \vec{J}_{\alpha\beta,G} - \vec{J}_{\alpha\beta,H} \right|_{\vec{\partial v}} = 0$

Momentum

$$m_{\alpha} \langle \vec{v}, C_{\alpha\beta} \rangle_{\vec{v}} = -m_{\beta} \langle \vec{v}, C_{\beta\alpha} \rangle_{\vec{v}} \implies \left[\left\langle 1, J_{\alpha\beta,G}^{\parallel} - J_{\beta\alpha,H}^{\parallel} \right\rangle_{\vec{v}} = 0 \right]$$

Energy

$$m_{\alpha} \left\{ \left\langle v^{2}, C_{\alpha\beta} \right\rangle_{\vec{v}} \right\} = -m_{\beta} \left\{ \left\langle v^{2}, C_{\beta\alpha} \right\rangle_{\vec{v}} \right\} \Longrightarrow \left\langle \vec{v}, \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0$$

2V Rosenbluth-FP collision operator: numerical conservation of energy

- The symmetry to enforce is: $\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0$
- Due to discretization error: $\left\langle ec{v}, ec{J}_{etalpha,G} ec{J}_{lphaeta,H}
 ight
 angle_{ec{v}} = \boxed{\mathcal{O}\left(\Delta_{v}
 ight)}$
- We introduce a constraint coefficient such that:

$$\left\langle \vec{v}, \underline{\gamma_{\beta\alpha}} \vec{J}_{\beta\alpha,G} - \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}} = 0 \quad \gamma_{\beta\alpha} = \frac{\left\langle \vec{v}, \vec{J}_{\alpha\beta,H} \right\rangle_{\vec{v}}}{\left\langle \vec{v}, \vec{J}_{\beta\alpha,G} \right\rangle_{\vec{v}}} = 1 + \underline{\mathcal{O}(\Delta_v)}$$

$$C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_v \cdot \left[\overbrace{\gamma_{\alpha\beta}} \vec{J}_{\alpha\beta,G} - \frac{m_{\alpha}}{m_{\beta}} \vec{J}_{\alpha\beta,H} \right]$$

 Discretization is nonlinear, and ensures that, numerically:

$$m_{\alpha} \left\{ \left\langle v^2, C_{\alpha\beta} \right\rangle_{\vec{v}} \right\} = -m_{\beta} \left\{ \left\langle v^2, C_{\beta\alpha} \right\rangle_{\vec{v}} \right\}$$

2V Rosenbluth-FP collision operator: numerical conservation of momentum+energy

 Simultaneous conservation of momentum and energy requires enforcing both symmetries numerically:

with:
$$C_{\alpha\beta} = \Gamma_{\alpha\beta} \nabla_v \cdot \underbrace{\left[\underbrace{\underline{\eta}_{\alpha\beta}} \cdot \vec{J}_{\alpha\beta,G} - \frac{m_{\alpha}}{m_{\beta}} \vec{J}_{\alpha\beta,H} \right]}_{\text{Momentum}}$$

$$\underline{\eta}_{\alpha\beta} = \begin{bmatrix} \gamma_{\alpha\beta} + \epsilon_{||,\alpha\beta} & 0 \\ 0 & \gamma_{\alpha\beta} \end{bmatrix} \quad \text{Momentum}$$

$$\gamma_{\alpha\beta} = \frac{\left\langle \vec{v}, \vec{J}_{H,\beta\alpha} \right\rangle_{\vec{v}} + \epsilon_{\alpha\beta,||}^{+} \left\langle \vec{v}, \vec{J}_{G,\alpha\beta} \right\rangle_{\vec{v}-\vec{u}}^{+}}{\left\langle \vec{v}, \vec{J}_{G,\alpha\beta} \right\rangle_{\vec{v}}} \quad \text{Energy}$$

$$\epsilon_{\alpha\beta} = \left\{ \begin{array}{c} \epsilon_{||,\alpha\beta} = 0 & \text{if } v_{||} - u_{avg,||,\alpha\beta} \leq 0 \\ \epsilon_{||,\alpha\beta} = \frac{\langle 1,J_{H,\beta\alpha,||} \rangle_{\vec{v}} + \gamma_{\alpha\beta} \left\langle 1,J_{G,\alpha\beta,||} \right\rangle_{\vec{v}}}{\left\langle 1,J_{G,\alpha\beta,||} \right\rangle_{\vec{v}-\vec{u}_{avg,\alpha\beta}}} \quad \text{else} \end{array} \right\}$$

2V Rosenbluth-FP collision operator: numerical preservation of positivity

- RFP collision operator is an advection-(tensor) diffusion operator in velocity space
- Use SMART (Gaskell & Law, 1988) for advection
 - -High-order advection when possible
 - -Reverts to upwinding otherwise
 - Monotonic, positivity preserving
 - -Suitable for implicit timestepping
- Use limited tensor diffusion (Lipnikov et al., 2012) for tensor diffusion component
 - Maximum-principle preserving
 - Compatible with nonlinear iterative solvers

Single-species initial random distribution: Thermalization to a Maxwellian

Single-species random distribution: Conservation properties

Electron-proton Temperature relaxation: Asymptotic treatment test & mesh savings

- Realistic mass ratio, $m_i/m_e = 1836$
- Temperature disparity of 2 => $v_{th,e} \sim 60 v_{th,i}$

Mesh used with asymptotics: 128x64

Brute force (no asymptotics) will require:

$$2\left(\frac{v_{th,e}}{v_{th,i}}n_{min}\right)^2 \sim 2400 \times 1200$$

Velocity mesh savings of ~350!

v_{th} adaptivity provides an enabling capability to simulate ICF plasmas

- D-e-α, 3 species thermalization problem
- Resolution with static grid:

$$N_v \sim 2 \left(\frac{v_{th,e,\infty}}{v_{th,D,0}}\right)^2 = 140000 \times 70000$$

Resolution with adaptivity and asymptotics:

$$N_v = 128 \times 64$$

Mesh savings of

1D-2V Vlasov equation: Conservation properties with velocity space adaptivity

Temporal Inertial Terms

Vlasov equation with adaptivity in velocity space: Temporal inertial terms

• Focus on temporal inertial terms due to normalization wrt $v_{th}(r,t)$ (0D):

$$\frac{\partial \widehat{f}_{\alpha}}{\partial t} - \frac{1}{2} \frac{\partial \ln T_{\alpha}}{\partial t} \widehat{\nabla}_{v} \cdot \left[\overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right] = 0$$

Which can be rewritten as:

$$v_{th,\alpha}^2 \frac{\partial \widehat{f}_{\alpha}}{\partial t} - \frac{\partial_t v_{th,\alpha}^2}{2} \widehat{\nabla}_v \cdot \left(\overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) = 0$$

 Mass conservation can be trivially shown from this equation by integrating in velocity space

$$v_{th}^2 \frac{\partial n_{\alpha}}{\partial t} = 0$$

VE with adaptivity in velocity space:

Conservation of momentum

$$v_{th,\alpha}^2 \frac{\partial \widehat{f}_{\alpha}}{\partial t} - \frac{\partial_t v_{th,\alpha}^2}{2} \widehat{\nabla}_v \cdot \left(\overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) = 0$$

Rewrite as:

$$v_{th,\alpha} \left\{ \partial_t \left(v_{th,\alpha} \widehat{f}_{\alpha} \right) - \partial_t v_{th,\alpha} \left[\widehat{f}_{\alpha} + \widehat{\nabla}_v \cdot \left(\overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) \right] \right\} = 0$$

 Momentum conservation can be trivially shown by taking second velocity moment and gives:

$$v_{th} \frac{\partial (n_{\alpha} \vec{u}_{\alpha})}{\partial t} = 0$$

• This property relies on the fact that: $\left\langle \hat{\vec{v}}, \hat{f}_{\alpha} + \hat{\nabla}_{v} \cdot \left(\hat{\vec{v}} \hat{f}_{\alpha} \right) \right\rangle_{\vec{v}} = 0$

This property must be enforced numerically:

$$\left\langle \overrightarrow{\widehat{v}}, \widehat{f}_{\alpha} + \widehat{\nabla}_{v} \cdot \left(\underline{\underline{\Upsilon}}_{t,\alpha} \overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) \right\rangle_{\overrightarrow{v}} = 0 \quad \underline{\underline{\Upsilon}}_{t,\alpha} = \begin{bmatrix} \Upsilon_{\parallel,\alpha} & 0 \\ 0 & 1 \end{bmatrix}$$

VE adaptivity in velocity space: Conservation of energy

$$v_{th,\alpha}^2 \frac{\partial \widehat{f}_{\alpha}}{\partial t} - \frac{\partial_t v_{th,\alpha}^2}{2} \widehat{\nabla}_v \cdot \left(\overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) = 0$$

Rewrite as:

$$\partial_t \left(v_{th,\alpha}^2 \widehat{f}_\alpha \right) - \partial_t v_{th,\alpha}^2 \left[\widehat{f}_\alpha + \frac{\widehat{\nabla}_v}{2} \cdot \left(\widehat{v} \widehat{f}_\alpha \right) \right] = 0$$

 Energy conservation can be trivially shown by taking first velocity moment and gives:

$$\frac{\partial U_{\alpha}}{\partial t} = 0$$

• This property relies on the fact that:
$$\left\langle \widehat{v}^2, \widehat{f}_\alpha + \frac{1}{2} \widehat{\nabla}_v \cdot \left(\widehat{\widehat{v}} \widehat{f}_\alpha \right) \right\rangle_{\overrightarrow{v}} = 0$$

This property must be enforced numerically:

$$\left\langle \widehat{v}^2, \widehat{f}_{\alpha} + \frac{\gamma_{t,\alpha}}{2} \widehat{\nabla}_{v} \cdot \left(\widehat{v} \widehat{f}_{\alpha} \right) \right\rangle_{\overrightarrow{v}} = 0 \quad \gamma_{t,\alpha} = -\frac{\left\langle \frac{\widehat{v}^2}{2}, \widehat{f}_{\alpha} \right\rangle_{\widehat{v}}}{\left\langle \frac{\widehat{v}^2}{2}, \frac{1}{2} \widehat{\nabla}_{v} \cdot \left(\widehat{v} \widehat{f}_{\alpha} \right) \right\rangle_{\widehat{v}}}$$

VE adaptivity in velocity space:

All conservation laws

$$v_{th,\alpha}^2 \frac{\partial \widehat{f}_{\alpha}}{\partial t} - \frac{\partial_t v_{th,\alpha}^2}{2} \widehat{\nabla}_v \cdot \left(\overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) = 0$$

Fruncation

error

Rewrite as:

$$\partial_t \left(v_{th,\alpha}^2 \widehat{f}_{\alpha} \right) - \partial_t v_{th,\alpha}^2 \left[\widehat{f}_{\alpha} + \gamma_{t,\alpha} \widehat{\nabla}_v \cdot \left(\overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) \right] + \xi_{t,\alpha} = 0$$

$$\underbrace{\xi_{t,\alpha}} = v_{th,\alpha} \left\{ \partial_t \left(v_{th,\alpha} \widehat{f}_{\alpha} \right) - \partial_t v_{th,\alpha} \left[\widehat{f}_{\alpha} + \widehat{\nabla}_v \cdot \left(\underbrace{\Upsilon_{t,\alpha}} \widehat{v} \widehat{f}_{\alpha} \right) \right] \right\} + \underbrace{\eta_{t,\alpha}} \\
- \left\{ \partial_t \left(v_{th,\alpha}^2 \widehat{f}_{\alpha} \right) - \partial_t v_{th,\alpha}^2 \left[\widehat{f}_{\alpha} + \underbrace{\widehat{\nabla}_v}_2 \cdot \left(\widehat{v} \widehat{f}_{\alpha} \right) \right] \right\}$$

$$\frac{\eta_{t,\alpha}}{(v)}(v) = \left\{ v_{th,\alpha}^2 \partial_t \widehat{f}_{\alpha} - \partial_t v_{th,\alpha}^2 \widehat{\nabla}_v \cdot (\widehat{v}\widehat{f}_{\alpha}) \right\}
-v_{th,\alpha} \left\{ \partial_t \left(v_{th,\alpha} \widehat{f}_{\alpha} \right) - \partial_t v_{th,\alpha} \left[\widehat{f}_{\alpha} + \widehat{\nabla}_v \cdot (\widehat{v}\widehat{f}_{\alpha}) \right] \right\}$$

1D Spatial Inertial Terms

VE adaptivity in velocity space:

Spatial inertial terms

All Coriolis terms due to normalization wrt v_{th}(r,t):

$$v_{th,\alpha}^{2} \partial_{t} \widehat{f}_{\alpha} + \underbrace{v_{th,\alpha}^{2} \partial_{x} \left(v_{th,\alpha} \widehat{v}_{||} \widehat{f}_{\alpha}\right)}_{} - \partial_{t} v_{th,\alpha}^{2} \frac{\widehat{\nabla}_{v}}{2} \cdot \left[\overrightarrow{\widehat{v}} \widehat{f}_{\alpha}\right] - v_{th,\alpha} \underbrace{\partial_{x} v_{th,\alpha}^{2}}_{} \frac{\widehat{\nabla}_{v}}{2} \cdot \left[\overrightarrow{\widehat{v}} \widehat{v}_{||} \widehat{f}_{\alpha}\right] = 0$$

Conservation of momentum:

$$v_{th,\alpha} \left\{ \partial_t \left(v_{th,\alpha} \widehat{f}_{\alpha} \right) - \partial_t v_{th,\alpha} \left[\widehat{f}_{\alpha} + \widehat{\nabla}_v \cdot \left(\underline{\underline{\Upsilon}}_{t,\alpha} \overrightarrow{\widehat{v}} \widehat{f}_{\alpha} \right) \right] + \partial_x \left(v_{th,\alpha}^2 \widehat{v}_{||} \widehat{f}_{\alpha} \right) - v_{th,\alpha} \partial_x v_{th,\alpha} \left[\widehat{v}_{||} \widehat{f}_{\alpha} + \widehat{\nabla}_v \cdot \left(\underline{\underline{\Upsilon}}_{x,\alpha} \overrightarrow{\widehat{v}} \widehat{v}_{||} \widehat{f}_{\alpha} \right) \right] \right\} = 0$$

Conservation of energy:

$$\partial_{t} \left(v_{th,\alpha}^{2} \widehat{f}_{\alpha} \right) - \partial_{t} v_{th,\alpha}^{2} \left[\widehat{f}_{\alpha} + \gamma_{t,\alpha} \frac{\widehat{\nabla}_{v}}{2} \cdot \left(\widehat{v} \widehat{f}_{\alpha} \right) \right] + \partial_{x} \left(v_{th,\alpha}^{3} \widehat{v}_{||} \widehat{f}_{\alpha} \right)$$
$$- v_{th,\alpha} \partial_{x} v_{th,\alpha}^{2} \left[\widehat{v}_{||} \widehat{f}_{\alpha} + \underbrace{\gamma_{x,\alpha}}_{2} \underbrace{\widehat{\nabla}_{v}}_{2} \cdot \left(\widehat{v} \widehat{v}_{||} \widehat{f}_{\alpha} \right) \right] = 0$$

VE adaptivity in velocity space:

All conservation laws

$$\partial_{t} \left(v_{th,\alpha}^{2} \widehat{f}_{\alpha} \right) - \partial_{t} v_{th,\alpha}^{2} \left[\widehat{f}_{\alpha} + \gamma_{t,\alpha} \frac{\widehat{\nabla}_{v}}{2} \cdot \left(\widehat{v} \widehat{f}_{\alpha} \right) \right] + \left[\partial_{x} \left(v_{th,\alpha}^{3} \widehat{v}_{||} \widehat{f}_{\alpha} \right) \right]$$

$$- v_{th,\alpha} \partial_{x} v_{th,\alpha}^{2} \left[\widehat{v}_{||} \widehat{f}_{\alpha} + \underbrace{\gamma_{x,\alpha}}^{\widehat{\nabla}_{v}} \underbrace{\widehat{\nabla}_{v}}_{2} \cdot \left(\widehat{v} \widehat{v}_{||} \widehat{f}_{\alpha} \right) \right] + \xi_{t,\alpha} + \underbrace{\xi_{x,\alpha}}_{2} = 0$$

$$= v_{th,\alpha} \left\{ \partial_{x} \left(v_{th,\alpha}^{2} \widehat{v}_{||} \widehat{f}_{\alpha} \right) - v_{th,\alpha} \partial_{x} v_{th,\alpha} \left[\widehat{v}_{||} \widehat{f}_{\alpha} + \widehat{\nabla}_{v} \cdot \left(\underbrace{\Upsilon_{x,\alpha}}_{2} \widehat{v}_{||} \widehat{f}_{\alpha} \right) \right] \right\} + \underbrace{\eta_{x,\alpha}}_{2}$$

$$- \left\{ \partial_{x} \left(v_{th,\alpha}^{3} \widehat{v}_{||} \widehat{f}_{\alpha} \right) - v_{th,\alpha} \partial_{x} v_{th,\alpha} \left[\widehat{v}_{||} \widehat{f}_{\alpha} + \underbrace{\widehat{\nabla}_{v}}_{2} \cdot \left(\widehat{v} \widehat{v}_{||} \widehat{f}_{\alpha} \right) \right] \right\}$$

Relaxation of sinusoidal profile

Sharp profile relaxation problem:

 $\mathsf{T}_{\mathsf{max}}/\mathsf{T}_{\mathsf{min}} = 10$

M=1.5 Shock (fluid regime)

M=5 Shock (kinetic regime)

Guderley problem (M=10 shock in spherical geometry)

Application:

Species segregation effects on reactivity in ICF capsules (Rygg effect)

Rygg effect: An anomalous degradation in yield, relative to hydro simulation with varying conc.

- Rygg et al. [PoP 2006] observed anomalous yield degradations relative to 1D clean hydro simulation for hydro-equivalent setups and varying concentration of species with charge to mass ratio i.e. Rygg effect
- A separate study by Hermann et al. [PoP 2009] confirmed these observations with different fuel composition
- Possibly attributed to species segregation and/or mix at pusher-fuel interface, compressibility reduction, etc.

[Hermann et al. PoP 2009]

Kinetic simulation by FPION didn't see the Rygg effect

- 15 atm fill 50:50 D-He³ Omega capsule simulation with hydro boundary for fuel [Larroche, PoP, 2012]
- Species stratifies early on (shock convergence) but destratifies at compression
- Slight yield degradation at shock bang, but not a factor of 2 seen by Rygg and Hermann

FPION: Density of D (left) and He3 (right) before shock convergence [Larroche, PoP 2012]

FPION: Density of D (left) and He3 (right) at compression [Larroche, PoP 2012]

A fuel-only kinetic simulation with hydro-equivalence

- 15 atm D-3He fill Omega capsule simulation with hydro boundary at fuel/pusher interface [Larroche, PoP 2012, collaborator]
- We ignore ablator (pusher)
- We vary fuel concentration will ensuring hydro equivalence:
 - Same total mass density
 - Same total pressure (ion+electron)

[Larroche, PoP 2012]

[Hermann et al., JOWOG37 2016]

iFP observes stratification surviving at later time

Kn reveals that D mean free path is on order capsule size for an appreciable time post shock convergence

$$Kn = \frac{\lambda_{mfp}}{R_{capsule}}$$

iFP matches yield trends in experiments

Conclusions

- iFP is a first of a kind multi-scale simulation capability for ICF
 - Implicit, scalable, adaptive, equilibrium preserving, strictly conserving
 - Strict verification campaign against hydro limit and other kinetic codes
- iFP multiscale formulation and algorithm has transformed an intractable problem (beyond exascale) into a very approachable one (terascale)
- Algorithmic approach to Vlasov-Fokker-Planck equation has addressed long-standing issues in the field
- Began physics simulation campaigns
 - For the first time, we have confirmed the impact of species segregation and plasma viscosity in reactivity
 - We did not find full agreement with experiments. Future work will include ablator.
 - Addressed controversies in literature on features of kinetic shocks (not discussed)